Non-symmetric convex domains have no basis of exponentials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-symmetric convex domains have no basis of exponentials

A conjecture of Fuglede states that a bounded measurable set Ω ⊂ R, of measure 1, can tile R by translations if and only if the Hilbert space L(Ω) has an orthonormal basis consisting of exponentials eλ(x) = exp2πi〈λ, x〉. If Ω has the latter property it is called spectral. We generalize a result of Fuglede, that a triangle in the plane is not spectral, proving that every non-symmetric convex dom...

متن کامل

Exponentials of Symmetric Matrices through Tridiagonal Reductions

A simple and efficient numerical algorithm for computing the exponential of a symmetric matrix is developed in this paper. For an n× n matrix, the required number of operations is around 10/3 n. It is based on the orthogonal reduction to a tridiagonal form and the Chebyshev uniform approximation of e−x on [0,∞).

متن کامل

Spectral gap for the Cauchy process on convex, symmetric domains

Let D ⊂ R be a bounded convex domain which is symmetric relative to both coordinate axes. Assume that [−a, a] × [−b, b], a ≥ b > 0 is the smallest rectangle (with sides parallel to the coordinate axes) containing D. Let {λn}n=1 be the eigenvalues corresponding to the semigroup of the Cauchy process killed upon exiting D. We obtain the following estimate on the spectral gap: λ2 − λ1 ≥ Cb a2 , wh...

متن کامل

Donut Domains: Efficient Non-convex Domains for Abstract Interpretation

Program analysis using abstract interpretation has been successfully applied in practice to find runtime bugs or prove software correct. Most abstract domains that are used widely rely on convexity for their scalability. However, the ability to express non-convex properties is sometimes required in order to achieve a precise analysis of some numerical properties. This work combines already know...

متن کامل

Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices

The authors show that there is a generalization of Rodrigues’ formula for computing the exponential map exp: so(n)→SO(n) from skewsymmetric matrices to orthogonal matrices when n ≥ 4, and give a method for computing some determination of the (multivalued) function log: SO(n) → so(n). The key idea is the decomposition of a skew-symmetric n×n matrix B in terms of (unique) skew-symmetric matrices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2000

ISSN: 0019-2082

DOI: 10.1215/ijm/1256060414